
TOWARD A THEORY OF THE SIMULTANEOUS FILTRATION OF 
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A model and a new formulation are proposed for problems concerning the flow of immiscible fluids in 

a porous body with allowance for their motion between pores of different sizes. Simple examples are 

examined. 

The simultaneous motion of immiscible liquids in a porous medium is traditionally studied by introducing 
relative phase permeabilities, dependent on the saturation of one of the liquids, into the Darcy equation. Such an 
approach has in particular produced the familiar Bakli--Leverette equation [1, 2]. Results which in a number of cases 
agree quite well with observations have been obtained from the application of such a model to problems involving the 
displacement of one liquid by another, capillary impregnation, etc. However, the model is actually based on 
assumptions that are in the nature of postulates which do not always reflect the reality of the given situation. There are 
questions as to both the degree to which these assumptions are valid and the size of the errors introduced by their use 

in practical calculations. 
First of all, it is assumed that the pressure of each liquid is the same in all of the pores of any small physical 

volume containing two immiscible liquids, regardless of the sizes of the pores. It is further assumed that the relative 
permeabilities and the capillary pressure are single-valued functions of saturation. The first of these assumptions 
corresponds to the hypothesis that processes involving flow between pores of different sizes proceed to completion. 
The second assumption corresponds to the hypothesis that one of the contacting liquids continuously fills the fine 
pores while the other fills the coarse pores. Thus, the pressure difference between these liquids, identifiable with the 
capillary pressure, is determined by the linear scale of the pores in which the liquids come into contact. Otherwise, the 
dependence of capillary pressure and the relative phase permeabilities on saturation could not be single-valued. These 
assumptions obviously correspond to a quasisteady approximation when the time scale of the filtration process is much 
greater than the relaxation time characterizing the dynamics of the fluids' redistribution among the pores, 

The latter is far from always the case. For example, if a nonwetting fluid which completely fills a body at the 
initial moment of time is displaced by a flow of a wetting fluid, the initial displacement occurs not through the fine 
pores (as it would under equilibrium conditions, due to the wetting fluid's greater affinity for the solid surface) but 
through the coarse pores (whose permeability is greater). In particular, if the body contains pores differing greatly in 
structure, size, and permeability, then the opposite relationship usually prevails between the above-indicated time 
characteristics. Examples of this are filtration flows in cracked-porous media [3-6] and processes involved in the 
penetration of moisture into soil [7]. In both cases, flows occurring between pores of different sizes play a fundamental 

role, causing various relaxation phenomena to take place. 
An analysis of the internal flow of fluids in the pore space of actual porous bodies requires a detailed 

knowledge of the topological structure of this space. Such knowledge is currently almost nonexistent. The known 
granular, capillary, network [1, 6], and fractal [8] models are of a preliminary nature and are in any case inadequate 
for describing the most important characteristics of porous media. Thus, in the present study we will use a simple 
phenomenological model describing a porous body as a set of coexisting continua, each of which models a connected 
system of pores with sizes in a certain interval. Exchange of fluids takes place between the continua. Such a model is 

a natural generalization of the representation used [3-7]. 
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Let the linear scale ("radius") of the pores change within the interval (amin, amax). We subdivide this interval 

into N segments of the length 5aj, with the boundaries aj = aj_ 1 + 5aj; a 0 = ami n, aN = area x. We will assume that the 

pores with the scales in each of these segments form coupled systems, making possible continuous flow through the 

pores of each of these systems. Such an assumption obviously places a lower limit on the value of 5aj. We will use 8ej 

to denote the specific volume of  the pores with the dimensions corresponding to the j th  segment, while differential 

permeability - -  characterizing flow through these pores - -  will be designated as 5kj. Given sufficiently small 5aj, the 

following representations are possible 

de, 6a dk  
~ej ~ ~ j, Sk i  ~ 5aj,  

da ,,] da ~,j (1) 

where e(a) and k ( a )  are the volume of all pores with scales smaller than a and the permeability associated with motion 

along such pores. At a = area x, these values coincide with the porosity e and permeability k of the body as a whole. 

We will regard pores with scales in the intervals (aj_l, aj) as interdependent continua. The rate of filtration of 

a fluid due to its flow through the j th  continuum can be determined in accordance with Darcy's law and (1) in the 
form 

8vj 8k j  (VP] .... Pg) "~ --- (VP; - -  Pg) 8a;, 
~ da (2) 

where pj is the mean pressure of the liquid in the pores of  the size being considered. 

We will assume that the liquid is ~ncompressible. Then the material balance equation in the j th  continuum can 

be written in the form 

div 6v] . . . . .  (qj- - -  q ) ) ,  (3) 

where qj+ and qj- are the bulk flows in the pores of the j th  continuum from other pores and from the pores of this 

continuum into these other pores, respectively, when calculated per unit volume of the porous body. Under actual 

situations, a fluid may with a certain probability fall within the investigated range of  pore dimensions out of all other 

possible dimensions; the same situation prevails with regard to the flow of the fluid f rom the pores. Thus, the 

quantities qj+ and qj- actually describe the mean volume of the pores of an isolated j th  continuum along with all other 

remaining pores. The quantities are therefore certain functionals of the pore scale. Here, pursuing the model goals, we 

assume for the sake of simplification that transport of  the fluid between the pores occurs mainly in succession through 

pores with intermediate linear scales. This proposition obviously imposes the main limitation on the theory being 

developed here. Then the difference qj+ --  qj- can be understood as qj+l --  qj, where qj+l is the flow, referred to a unit 

volume of the body, from the (j  + l)th continuum to the j th  continuum. If  we introduce a continuous function q(a)  

and use the smallness of 6aj, then by analogy with (1) we have 

qJ+~ ---q.i ~ (Oq / Oa)~j 5a]. (4) 

The quantity qj+l may depend on the viscosity of the liquid, the pressure difference P j + I  - -  P j  ill the 
corresponding continua, differential  permeability 6kj+l, and the scale aj+> It follows f rom dimensional theory that 

and it then follows from (I)-(3) that: 

q j -  c9~,, 5kj(pj .... PJ J~ (5) 
~aj 

a S a  dk  (PJ+J - -  PJ) - -  a 2 - P~-O dk  (V PJ - -  Pg) 5 a j  = a 2 da ~]+~ v ~ v & . (6) 

where aj is a certain dimensionless coefficient  which is dependent on aj and which to a certain extent describes the 

possibility of the penetration of liquid form one group of pores into another, minus the group of pores in the 
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intermediate scale. Actually, (6) constitutes a system of N differential equations in partial derivatives for N unknown 
pressures pj. In the particular case when only two continua are introduced, this system is transformed into the 
problems examined in [3-7]. 

Assuming 6aj to be small, taking (4) into account, and introducing p as a continuous function of a and its 
other arguments, we can employ a standard procedure to change over from finite-difference equations (6) to a single 
differential equation. As a result, we obtain the equation 

v 7 g .  = o, 

(a j) - a~aT?SajSai_~, 

(7) 

which is of the hyperbolic type. 
For many porous bodies, the topological properties of the pore space are approximately the same for different 

scale levels. This fact has in particular stimulated the formulation of the principle of statistical structural similitude. 
The use of this principle in defining porosity within the framework of the model of random fractals proposed in [8] 
produced quite satisfactory results. Similitude of the structure means that the function fl(a) determined in (7) can be 
regarded as a constant which, by definition, should be much less than unity. If  the field of the external body forces is 
independent of the coordinates and if the porous body is macroscopically uniform, then (7) leads to the equation 

dk A p _ _ ~  0 ( dk OP ) 
d---a --a-a da Oa == O, (8) 

which should be satisfied for all immiscible fluids simultaneously filling the porous body. We emphasize that the 
number of such fluids may be greater than the number two usually examined in the theory [1, 2]. 

The boundary between fluids in contact in pores of a certain scale is a certain hypersurface in four- 
dimensional space {r, a} and is dependent on time as a parameter. We will assign the equation of such a hypersurface 
I" in the form F(r ,  a, t) = 0 and will examine the boundary conditions which should be imposed on it. First of all, the 
pressure difference between the two sides of the hypersurface is the capillary pressure for the pores of the boundary 

scale, i.e., 

PI,,.: ;0 - -  p] ...... o .... p~ -- ~/a,  F (r, a, t) = 0, (9) 

where n is a coordinate which is normal to r and has its origin on I'. It is directed toward the side of the four- 
dimensional region occupied by the less-wetting fluid. The quantity a is proportional to the surface tension at the 
boundary of the fluids being examined. This surface tension is dependent on the structure of the pore space. 

A kinematic condition connecting the displacement of this hypersurface with the mean fluid velocity in the 
pores in the space {r, a} must then be imposed on I'. The mean velocity of the fluid in the pores is determined by the 
four-dimensional vector u*. The first three components of this vector, corresponding to the three-dimensional 
physical space, are determined by dividing the rate of filtration 6vj from (2) by the differential porosity 6ej from (1): 

6vi 1 dk (VP 9g), (10) 
U - ' 

8ej 1~ & 

while the fourth component is found by dividing the flow q from (5) by 6~j, i.e., 

. . . .  dk a_2_p ( l l )  
u. = a t  ~ d---e aa ' 

where a(r, t) represents the root of the equation F(r, a, t) = 0. 
We now proceed similarly to derive the boundary condition for a movable solid boundary in the mechanics of 

an ideal fluid [9]. The normal rate of displacement of the hypersurface I' in the space {r, a}, which can be expressed as 

U,, -- OF~at , V* [ a l 
Iv,F I :-: V, aa I ' 

should coincide with the normal velocity of the fluid in this space on F. This velocity is equal to the scalar product of 
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u* and the unit normal vector v*F~v*F1-1. As a result, with allowance for (I0) and (I i) we obtain the condition 

OF 1 

Ot ~x 
OF Op OF 1 

d/~ ( V P - - 0 g ) ~ + f ~  Oa Oa ' 

d~ . 

F(r ,  a, t)---O, 
(12) 

which determines the funct ion F(r, a, t). On the sections of  P corresponding to the values of  a, i.e., the hyperplanes 

a = ami n and a = amax, the flow q(a) should vanish. Following f rom this are the trivial conditions 

Op/Oa = O, a = amid,, a .... G~a~. (13) 

Conditions (9), (12), and (13) must be assigned on the boundaries between all regions in (r, a} that are 

continuously filled by di f ferent  immiscible fluids. These conditions must also be satisfied for fluids on both sides of  

each boundary.  In particular, (12) is simultaneously valid for both contacting fluids. It follows f rom this that the 

quantities in the right side of  (i2) are continuous with the crossing of the bounding hypersurfaceo Thus, we have Eqs. 

(8) for all of  the fluids, conditions (9) and (12) on the boundaries of  the regions that these fluids fill, conditions (13), 

and the initial and boundary  conditions dictated by the features of  the filtration process being examined. 

Let a certain fluid continuously fill all pores with the scale in the interval (al ,  a2) , where ak(r , t) are 

determined as the solutions of  the equations Fk(r , a, t) -- 0 of  the corresponding hypersurfaces.  I f  the relaxation time 

of the processes involving flow between pores of  different  sizes is much shorter than the time scale of  the filtration 

flow, then the pressure is slightly dependent  on a. Integrating (8) over da f rom a 1 to a 2 and allowing for  (2), we 
approximately obtain 

where we have introduced permeabil i ty and saturation 

K (% L~) = /~  (ao) - -  k (a~), eS (a .  a~) = 8 (a~) - e  (a~). (15) 

It is evident f rom this that, in the general case, K is not a single-valued function of saturation S - -  the hypothesis 

usually employed notwithstanding. The usual hypothesis is valid only in the case when one of the boundary conditions 
of the linear scale is f ixed (a x = ami n or a 2 = amax). 

I f  two fluids respectively occupy pores with a < a ,  and a > a,  (subscripts 1 and 2), then f rom (9), (14), and (15) 
we have 

Kj (u,) Ap.i -~ - t i.sOS.i ( , , ) / ( ) t ,  /),_ - /~ .L ,~;(~,. 

K l ( a . )  = K ( % , ,  a ,~ ,  K~(, . )  KI , , ,  a, ..... ), 5~-+-52 = l ,  (16) 

which corresponds to the standard model of  two-phase filtration [1, 2]. Given certain assumptions, the standard 

Bakli--Leveret te  equation can be obtained directly f rom (16) or f rom (12) in the unidimensional case. The single- 

valued dependences of  relative phase permeabil i ty and capillary pressure on saturation S 1 (or $2) which are used in 
this model are obtained af ter  exclusion of the parameter  a ,  f rom (16). 

To per form specific calculations, it is necessary to assign the functions e(a) and k(a). In accordance with the 
Kozeny theory and other models of  porous media and with allowance for  the above-employed  hypothesis on structural 
similitude, we take 

dk d~., 
. . . .  Ya 2 - - -  (17) 
da da ' 

where 7 is a dimensionless coefficient  which is independent of  a. We will determine differential  porosity by means of 
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a power relation that has been empirically substantiated for many porous media (limestones, sandstones, clayey 

materials, etc.) and which follows theoretically from the model of random fractals [ 8 ]  

d e c  C=__ ~(,,.__ 1) ( 1 1 ) - '  
da a " '  ' ~-i ~ - i  (18) 

H m i n  a m a x  

(for simplicity, we ignore the sharp maximum in the region of the smallest pores). In this case, the functions e(a) and 

k(a) are represented in the form: 

(llY x )n -1 art-1 n--1 
- -  Ctrnin 

n - - I  - n - - I  
a m a x  - - a m i .  

I~ I ( a , . , ~  ~ ~ - i  ( 1 9 )  
. . . .  ~ m a x /  3 - - n ,  

k ( a )  : =  yE. - -  ,z---1 ..... 1 - ( C / 3 - n -  arnin ) .  
3 - - .  ll a m a x  - -  a r n i n  

The character of  Eqs. (19) is quite different  with different  n; usually, 1 < n < 2. These formulas are simplified 

considerably when area x >> ami n. 
Let  us examine some simpie examples involving the solution of the proposed equations. Let  a porous body 

contain a wetting fluid which fills pores with scales in the interval (al, a2), For simplicity, we will ignore the presence 

of any other substance in the other pores. It then follows from (8) and (9) that 

; . . . . . . .  ,- - ( 2 0 )  
aj cq a,, \ O< dk /da]  < d k / d a  

Since the equations of  the boundary hypersurfaces in the given case have the form a--aj(t)  = O. we find from (12) and 

(20) that 

( de. - 1 ( i  da_~  c, ~s , ] =  1, 2. 
(21) 

dt li ~;], dk / da ] a I a. 

Inserting (17) into (18), we obtain the system of equations 

da.i ()~ - - l) ~ a  a; �9 , (22) 
dt r t C[~-"-t .... C[ 7 -1 C[ 1 

which are simplified considerably at a 1 << a~, when the solution of the system is as follows: 

1 1 R ._ ( a , o  1 ' ..... 
a ~ 7 : T  . . . . . . . . .  a!l I ale's t , R : -~ I \ ~ ,  , ~  1 , 

d e  t b~ 

~,/a,o i -- R z  n-~ "~ (n - -  1) ~-r 
a~o = a j  (0). 

(23) 

Given realistic values for  the physical parameters, the relaxation time of  the process of flow of the wetting 
fluid into f iner  pores may prove to be substantial if the parameter p is sufficiently small. Similar results for a 

nonwetting fluid are obtained from the above relations with a change in the sign of  o:. in this case, the coarser pores 

are filled. The interpore flow process is slowed considerably and eventually practically ceases if  there is a gas in the 
pores with a < a 1 and a > %. Within the framework of the model being examined, this gas is completely fixed. Its 

pressure changes during compression in the fine pores and during expansion in the coarse pores in accordance with the 

equation of state. 
Now let us examine the problem of the unidimensional displacement of a gas by a drop liquid in the case when 

the hydraulic resistance to the flow of the liquid can be ignored as a first approximation. If  the parameter/~ is very 

small compared to unity, then it is natural to seek the solution of the boundary-value problem for Eq. (8) in the form 
of a series in powers of  ft. If  the porous body is completely filled with gas at the initial moment of  time, then the 

equation of the bounding hypersurface can be written in the form x--h(a ,  t) = O, h(a, O) = O. Then from (8)-(9) we 
obtain the following as the principal term of the series for  the pressure, which is proportional to rio = 1 
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pr (,, t / - ,  p (t>_ r/P It> _ 
d~ 

�9 C a j h (a, t) (24) 

where the top and bottom signs pertain to the wetting and nonwetting fluids, respectively. With allowance for (24), we 

find the following f rom (12) for  small fl 

Ot - ~ d8 \ h (a, t) + 9 g ~ ] '  (25) 

the solution of which has the below form in the special case when the pressure P(t) = Po is assigned on the boundary 

x = 0  

( n . h )  p d k ~  de p o •  h - - t z ,  ln 1 q- 7 -  g.~f, h , =  
(26) 9gx 

(for the sake of determinateness, we assume that gx is positive). The asymptotes below follow from (26) at small and 

large h 

LW \ a / . . .  t 
h(/, h,,  

h ~ 9 dk - - -  ~,.t, h )X/ h,. 
,u de 

If Eq. (17) is valid, then at Po > 0 the quantity h(a, t) is a monotonically increasing function of both arguments. 

Meanwhile, the wetting fluid flows through all pores simultaneously, but the nonwetting fluid is capable of 

penetrating only those pores with a > a/pp. At Po < 0, only flow of the wetting fluid in pores with the scales a < 

a/lPol is possible; in this case, h(a, t) has a maximum as a function of  a. These features have much in common with 

the results obtained in [7]. 
In order to evaluate the effect  of interpore flow on the form of the bounding hypersurface,  it is necessary to 

examine the subsequent terms of the expansion of p in powers of fl and to account for  the term with fl in (12). If we 

do this, then instead of (25) we obtain a f i rs t -order  partial differential  equation. The expansion turns out to be 

nonuniformly valid with respect to time. However, it follows from an analysis of the process for  short periods of time 

that, in the case of a wetting fluid, exchange between pores helps weaken the dependence of h on a. In the case of a 

nonwetting fluid, it helps strengthen this dependence compared to (26). 

If we assign the total volume flow rate of the fluid eQ(t) at the inlet (x = 0) instead of  pressure P(t), then, as 

before, Eq. (24) is approximately valid for small ft. However,  in this case P(t) needs to be determined from the 

equation 

a .~ (27) 

The asymptotic displacement regime attained at t --* oo is of  interest. We will assume that in a process with a 

specified constant flow rate, the form of the bounding hypersurface, moving along x at a constant velocity, ceases to 
depend on time. We then have 

h (a, t) - Qt + H (a), H (am,n) =-- 0, p (t) ..~ p t ,  

so that at t --4 oe the equation of  the hypersurface x - - Q t - - H ( a )  = 0 .  In addition: 

P (t) • c~/a P 

h (a, t) Q 

Ignoring the external body forces for the sake of simplification, we use (27) to obtain P = e#Q2/k. Taking this into 

account, we use (12) to obtain the following instead of (25) 
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from which we then obtain 

_ _  

. \ d o !  - -  

d4 .... f{  
da z 

kcr dH 1 

Q dT + -ff l -  

z'a 2aZf 

z = ~Q/ (h  f - k /2~a  z. 

(28) 

,29, 

Thus, the postulated asymptotic regime can exist only in the case when the expression in the square brackets in 

(29) is positive for any a in the interval (ami n, amax). Assuming for the sake of  determinateness that Eqs. (17)-(19) are 

valid with 1 < n < 3, we see that this holds at 

as well as in the case when 

f ._ 7 rz---1 b a - ' ' -  1 ~ ,  b - -  a (30) 
2 ;3 - -  n b z (b l-~ - -  1) 2 a,~li,, ' 

( )' z 1-- -2  f (31) / < Y '  

for pores of all scales. It is not hard to see that inequality (30) is satisfied for all a at 2 < n < 3. However,  the opposite 

inequality holds in the case of  a shallower relation (18) corresponding to l < n < 2, when the percentage of coarse 

pores is relatively high. In this case, the above-examined asymptotic regime fails to be established either for the 

wetting fluid or for  the nonwetting fluid if  the flow rate Q is high enough, i.e., 

Q > Q *  -2  .2 (3 - -  n) (n - -  2)J la ' 
(32) 

When the above inequalities are satisfied, the flow regimes becomes essentially unsteady: the form of the 

bounding hypersurface changes even over long periods of time. If the fluid being displaced is not a gas and if  this is 

necessary to consider hydraulic resistance to its flow, then oscillatory displacement regimes corresponding to a 

particular mode of  "flooding" may also evidently be established. In these regimes, the presence of a sufficient number 

of coarse and relatively permeable pores leads to "breakthrough" of the displacing fluid to them. As a result, remaining 

behind the fluid front  are closed volumes in which part of  the pore space is occupied by fluid which has not yet been 

able to escape. 
If condition (30) or condition (31) are satisfied, then the function H(a)  is obtained from (29) by a simple 

formula of integration. The function decreases monotonically with an increase in a for  a wetting fluid and increases 
with a for  a nonwetting fluid. Due to a shortage of space, the relations H(a)  and the saturation distributions S ( x )  

which result f rom these relations are not presented here. In contrast to the Bakli--Leverette theory, the functions S ( x )  

do not have a discontinuity on the displacement front. 
Similar results can easily be obtained for flow regimes in which pressure is assigned at the inlet x = 0 if we 

consider the effect  of external body forces. In this ease, the quantity Pgx plays the role of P / Q ,  while the value of Q 

at t ---, oo is determined from (27). 
One important conclusion which follows from the above examples is the strong effect  of  pore-size distribution 

on both the quantitative and the qualitative characteristics of  the displacement regimes. Here,  a particularly important 
role is played by coarse pores. The latter ensure rapid flow of the displacing fluid accompanied by disconnection of 
the regions filled by the fluid being displaced. It can be expected that such disconnection will be even more important 

for materials possessing dual porosity and having a bimodal pore distribution. Cloddy soils are an example of this class 

of materials. 
The main shortcoming of  the model developed above has to do with the assumption that fluid flows in 

succession through pores with intermediate scales during its movement between pores of di f ferent  sizes. This precludes 
direct exchange between different-s ize  pores, which in turn ultimately leads to the neglect of important hysteresis 
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effects. In particular, it leads to equality of the sum of the relative phase permeabilities in (16) to unity. The use of the 

above-mentioned assumption also means that it is impossible for gas to be exchanged between fine and coarse pores 
when the intermediate-scale pores contain a drop liquid. Thus, the most important goal of future attempts to improve 

the theory is to avoid having to use this assumption and allow for the possibility of the movement of fluid between 
same-size pores through pores of a different size. Such a goal can be attained in part through the further development 

of network models [6, 10-12] of porous materials. 

NOTATION 

Here a is the linear scale of pores; b, dimensionless scale in (30); C, coefficient in (18); F, function determining 

the boundary hypersurface; f,  function determined in (29); g, acceleration of the external mass field; H, h, functions 
entering into the determination of F; K, phase permeability; n, exponent in the scale distribution of porosity; P, 
coefficient in the determination of the boundary pressure P(t); p, pressure; R, parameter in (23); r, position vector; 
eQ, flow rate of fluid; q, flow along the axis of the pore scales; S, saturation; t, time; u, u a, velocity determined in (10) 

and (11); x, coordinate; z, dimensionless flow rate; a, fl, coefficients in (5) and (7); 7, parameter in (17); ~, porosity; 
#m viscosity; p, density; e, quantity proportional to the surface tension, entering into the determination of capillary 

pressure; r, relaxation time determined in (23). 
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